Step of Proof: sq_stable__squash
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
sq
stable
squash
:
1.
P
:
2.
(
P
)
P
latex
by ((((BasicSquashHD 2)
CollapseTHEN (UnhideSinceSquashedConcl))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
True
,
T
origin